RooUnfold SVD vs TUnfold

Introduction

- Tried to reproduce SVD results (as used for the papers) using TUnfold (with kRegModeCurvature)
 - used the same 6 gen bins, and 12 reco bins (each gen bin split in two)
 - ensured the bias distribution was being used correctly by setting biasScale = $N_{data}/N_{MC} \sim I$ (previously it was defaulting to 0)
- The plots on the following slides show the SVD results with regularisation parameter k varied between I (maximal regularisation, measured = truth) and 6 (minimal regularisation), alongside the TUnfold results with tau set to approximately match the SVD results
 - we used k=3 for the paper
- Note I turned off jet smearing to make these plots, so only the purely leptonic variables exactly match the paper results (for k=3)

A_{Δphi} results

note, scanLcurve prefers tau < 0.00 l

SVD clearly over-regularised here. Can't match this regularisation strength with TUnfold, even with very high tau (see next slide).

SVD, k=2

TUnfold, tau = 10

can't match this regularisation strength, even with higher tau

Alepc results

note, scanLcurve prefers tau < 0.00 l

1/0 da/d(Aln| CMS, 5.0 fb⁻¹ at \sqrt{s} =7 TeV → (Data - BG) unfolded ... Syst. uncertainty MC@NLO parton level 0.3 0.2 0.1 $\frac{1}{5}$ 2 $\Delta \eta I$ 0.5 1.5 A_{lepC}=0.00969029 +/- 0.0106957

TUnfold, tau ~ 0.007

[missing plot]

Ac results

1/σ dσ/d(Δly_t) CMS, 5.0 fb⁻¹ at \sqrt{s} =7 TeV → (Data - BG) unfolded Syst. uncertainty 0.6 MC@NLO parton level 0.5 0.4 0.3 0.2 0.1 1.5 $\Delta |y_{\downarrow}|$ $A_C = -0.00296875 + /- 0.0243061$

A_P results

Results are also similar for lepPlusCosTheta and lepMinusCosTheta individually

 $1/\sigma d\sigma/d(\cos(\theta))$ CMS, 5.0 fb⁻¹ at \sqrt{s} =7 TeV → (Data - BG) unfolded Syst. uncertainty 0.7 MC@NLO parton level 0.6 0.5 0.4 0.3 -1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 $A_P = 0.00803701 + /- 0.0316642$

1/α dα/d(cos(θ)) 0.75 0.65 0.55 0.55 CMS, 5.0 fb⁻¹ at \sqrt{s} =7 TeV → (Data - BG) unfolded Syst. uncertainty MC@NLO parton level 0.5 0.45 0.4 0.35 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 $\cos(\theta_{l})$ $A_P = -0.0135642 + /- 0.0208065$

TUnfold, tau = 0.00 I

1/σ dσ/d(cos(θ)) 0 6 6 5 2 6 5 5 -CMS, 5.0 fb⁻¹ at √s=7 TeV (Data - BG) unfolded Syst. uncertainty MC@NLO parton level 0.5 0.45 0.4 0.35 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 $cos(\theta_l)$ $A_P = -0.0189434 + /- 0.0166187$

TUnfold, tau = 0.002

1/α dα/d(cos(θ)) 0 65 6 0 55 0 55 0 55 CMS, 5.0 fb⁻¹ at \sqrt{s} =7 TeV (Data - BG) unfolded Syst. uncertainty MC@NLO parton level 0.5 0.45 0.4 0.35 -1 -0.8-0.6-0.4-0.2 0.2 0.4 0.6 0.8 $\cos(\theta_{l})$ $A_P = -0.0170707 + /- 0.015076$

$((\theta) \cos(\theta))$ 0.55 CMS, 5.0 fb⁻¹ at \sqrt{s} =7 TeV (Data - BG) unfolded Syst. uncertainty MC@NLO parton level 0.5 0.45 0.4 0.35 -1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 A_P =-0.00843844 +/- 0.00772656 $\cos(\theta_l)$

$((\theta) \cos(\theta)) \cos(\theta)$ CMS, 5.0 fb⁻¹ at \sqrt{s} =7 TeV → (Data - BG) unfolded Syst. uncertainty MC@NLO parton level 0.5 0.45 0.4 0.2 0.4 0.6 0.8 -0.8-0.6-0.4-0.2 $\cos(\theta_{l})$ $A_P = 0.000375471$

Ac1c2 results

TUnfold, tau = 0.0003

 $A_{c1c2}=0.0136347 +/- 0.0534609$ Thursday, September 12, 2013

TUnfold, tau = 0.00 I

 A_{c1c2} =-0.00310944 +/- 0.0355165

 $A_{c1c2}=0.00581684 +/- 0.0325673$ Thursday, September 12, 2013

note, scanLcurve prefers tau ~ 0.005

TUnfold, tau = 0.005

=-0.0109461 +/- 0.0265454

TUnfold, tau = 0.02

(Data - BG) unfolded

MC@NLO parton level

Syst. uncertainty

0.2 0.4 0.6 0.8

_CMS, 5.0 fb⁻¹ at √s=7 TeV

 A_{c1c2} =-0.0309882 +/- 0.0204935

 $1/\sigma \, d\sigma/d(\cos(\theta_{|+})\cos(\theta_{|-}))$

1.8

1.6

8.0

0.6

0.4

0.2

Summary

- TUnfold can reproduce SVD with $6 \le k \le 3$ very well
 - for the purely leptonic variables, even k=6 corresponds to relatively large tau, suggesting k=3 was over-regularising (we already knew this from our bin-by-bin linearity plots)
- The behaviour of the two methods is different in the limit of very strong regularisation (using SVD with k=1 the "unfolded" distribution exactly matches the MC truth, which doesn't happen in TUnfold with very large tau)
 - this doesn't affect us as we'd never use such strong regularisation
- On average, k=3 corresponds to tau~0.01, i.e. quite strong regularisation
 - this could explain why the TUnfold uncertainties from other groups are higher than our SVD uncertainties (they use less regularisation)
 - strong regularisation is not a problem as long as good linearity is maintained
 - we observed good linearity for the inclusive asymmetries, but not bin-bin
 - this effect is visible in the \sim constant $A_{\Delta phi}$ but changing distribution shape as the regularisation is increased
- The useful range of tau (at least for ID unfolding in 6 gen bins) is 0.0001 0.1, which matches what we saw with scanLcurve (decreasing or increasing tau beyond this range has little effect)

Conclusions

- RooUnfold SVD and TUnfold can produce very similar results, so no reason not to switch to TUnfold
- There were three reasons for the apparent discrepancy:
 - didn't apply strong enough regularisation in TUnfold (tau \sim 0.01 is required, while tau \sim 0.0001 is the default)
 - didn't set "bias scale" in TUnfold, so it defaulted to zero, meaning we had no bias distribution. Have to call DoUnfold(tau, hData_bkgSub, biasScale);
 - confusion due to bug that set the input data to reco-level MC for "pure TUnfold" but not "TUnfold via RooUnfold", which meant the two TUnfold implementations gave inconsistent results
- TUnfold in general has no problem with non-uniform bins, which were used throughout these slides (although it might adversely
 affect scanLcurve)
 - I found the results are also very similar when using the original 6 reco bins (advised against in the documentation, I think mostly because it breaks scanLcurve), instead of the 12 reco bins used in these slides (from splitting each of the 6 original bins in two)
- Since we'll be using TUnfold, we should continue working on how best to determine tau
 - tau~0.01 roughly matches the SVD results, but is probably over-regularising
 - we know the optimal range is $\sim 0.001 0.01$, based on these results and Dan's scanLcurve results, but can scanTau (TUnfoldDensity) be more precise than this?

Plan

- Implement TUnfoldDensity
 - find out which version of root is required and work with Terrence to get installed at UCSD
 - compare the results of scanTau and scanLcurve, and understand the two methods
- Run Linearity tests (inclusive and bin-by-bin) for TUnfold as implemented in these slides, using several values of tau (e.g. 0.002,0.005,0.01), and compare to SVD results in the AN

Dan, with help from Jacob

